Algorithms for Estimation in Distributed Parameter Systems Based on Sensor Networks and ANFIS

نویسنده

  • CONSTANTIN VOLOSENCU
چکیده

This paper presents some algorithms for estimation of the state variables in distributed parameter systems of parabolic and hyperbolic types. These algorithms are expressed on regression using anterior values of adjacent state variables and on auto-regression using the anterior values of the same variable. The momentary values may be obtained using sensors from a network placed in the field of the distributed parameter systems. The computation of the estimates is done using the adaptive-network-based fuzzy inference scheme. The structure of the ANFIS is derived based on training using measured values obtained form the sensor network. The algorithms and the method of estimation, emerged from three powerful concepts as theory of distributed parameter systems, artificial intelligence, with its tool adaptive-network-based fuzzy inference and the intelligent wireless ad-hoc sensor networks allow treatment of large and complex systems with many variables by learning and extrapolation. They have applications in monitoring, fault estimation, detection and diagnosis of large and complex physical processes. The paper presents some case studies as applications of all four algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks

Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks

Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010